MTH 101/IDP 101 Math Skills Studio (4 Credits)
Offered as MTH 101 and IDP 101. This course is for students who need additional preparation to succeed in courses containing quantitative material. It provides a supportive environment for learning or reviewing, as well as applying, arithmetic, algebra and mathematical skills. Students develop their numerical and algebraic skills by working with numbers drawn from a variety of sources. This course does not carry a Latin Honors designation. Enrollment limited to 20. Instructor permission required. Fall, Interterm

MTH 102 Elementary Functions (4 Credits)
Linear, polynomial, exponential, logarithmic and trigonometric functions graphs, verbal descriptions, tables and mathematical formulae. For students who intend to take calculus or quantitative courses in scientific fields, economics, government and sociology. Also recommended for prospective teachers preparing for certification. (M) Fall

MTH 103/IDP 103 Precalculus and Calculus Bootcamp (2 Credits)
Offered as IDP 103 and MTH 103. This course provides a fast-paced review of and intense practice of computational skills, graphing skills, algebra, trigonometry, elementary functions (pre-calculus) and computations used in calculus. Featuring a daily review followed by problem-solving drills and exercises stressing technique and application, this course provides concentrated practice in the skills needed to succeed in courses that apply elementary functions and calculus. Students gain credit by completing all course assignments. This course does not count towards the Mathematics or Mathematical Statistics majors. S/U only. Enrollment limited to 20. Fall, Interterm, Spring, Variable

MTH 105ar Topics in Discovering Mathematics-MathStudio: Making, Art + Math (4 Credits)
The course has geometrical, mathematical and studio art components. Students draw and build 3D objects with simple tools and study their geometric and mathematical properties. Introduction to elements of geometry, algebra and symmetry in connection to what is built. (M) Spring, Variable

MTH 105we Topics in Discovering Mathematics-The Mathematics of Wealth (4 Credits)
This course looks at the intersection of mathematics and social justice thru the lens of wealth in America. Social justice topics include wealth distribution, taxes, the Gini index and the poverty cycle. Mathematical topics include mathematical modeling, logic, set theory, statistics and probability. (E) Fall, Spring, Variable

MTH 111 Calculus I (4 Credits)
Rates of change, differentiation, applications of derivatives including differential equations and the fundamental theorem of the calculus. Written communication and applications to other sciences and social sciences motivate course content. Enrollment limited to 25. (M) Fall, Spring

MTH 112 Calculus II (4 Credits)
Techniques of integration, geometric applications of the integral, differential equations and modeling, infinite series and approximation of functions. Written communication and applications to other sciences and social sciences motivate course content. Prerequisite: MTH 111 or equivalent. Enrollment limited to 25. (M) Fall, Spring

MTH 153 Introduction to Discrete Mathematics (4 Credits)
An introduction to discrete (finite) mathematics with emphasis on the study of algorithms and on applications to mathematical modeling and computer science. Topics include sets, logic, graph theory, induction, recursion, counting and combinatorics. Enrollment limited to 25. (M) Fall, Spring

MTH 205/CSC 205 Modeling in the Sciences (4 Credits)
Offered CSC 205 and MTH 205. This course integrates the use of mathematics and computers for modeling various phenomena drawn from the natural and social sciences. Scientific topics, organized as case studies, span a wide range of systems at all scales, with special emphasis on the life sciences. Mathematical tools include data analysis, discrete and continuous dynamical systems and discrete geometry. This is a project-based course and provides elementary training in programming using Mathematica. Designations: Theory, Programming. Prerequisites: MTH 112. CSC 110 recommended. Enrollment limited to 20. (M) Fall, Spring, Annually

MTH 206/EDC 206 Statistical Literacy in Educational Research and Policy (4 Credits)
Offered as EDC 206 and MTH 206. Education is increasingly data driven--data is used to evaluate classroom pedagogy, student achievement, teacher efficacy and school failure. It is important for educators then, to be able to interpret complex data and make research-based decisions. This course fosters student's ability to critically interpret education-related data by concentrating on the application of critical thinking skills to arguments involving statistics in education. The student emerges as a knowledgeable consumer of statistics rather than a producer of statistical calculations. Course activities focus on the interpretation, evaluation and communication of statistics in educational research literature, standardized tests, and real-world situations. (M) Fall, Spring, Variable

MTH 211 Linear Algebra (4 Credits)
Systems of linear equations, matrices, linear transformations, vector spaces. Applications to be selected from differential equations, foundations of physics, geometry and other topics. Not open to students who have taken MTH 210. Prerequisite: MTH 112 or equivalent, or MTH 111 and MTH 153; MTH 153 is suggested. Enrollment limited to 35. (M) Fall, Spring

MTH 212 Multivariable Calculus (4 Credits)
Theory and applications of limits, derivatives and integrals of functions of one, two and three variables. Curves in two-and three-dimensional space, vector functions, double and triple integrals, polar, cylindrical, spherical coordinates. Path integration and Green's Theorem. Prerequisites: MTH 112. MTH 211 suggested (may be concurrent). Enrollment limited to 30. (M) Fall, Spring
MTH 233 An Introduction to Abstract Algebra (4 Credits)
An introduction to the concepts of abstract algebra, including groups, quotient groups and, if time allows, rings and fields. Prerequisites: MTH 153 and MTH 211 or equivalent. (M)
Spring

MTH 238 Number Theory (4 Credits)
Topics to be covered include properties of the integers, prime numbers, congruences, various Diophantine problems, arithmetical functions and cryptography. Prerequisite: MTH 153 and MTH 211, or equivalent. (M)
Fall

MTH 246 Probability (4 Credits)
An introduction to probability, including combinatorial probability, random variables, discrete and continuous distributions. Prerequisites: MTH 153 and MTH 212 (may be taken concurrently), or equivalent. (M)
Fall

MTH 254 Combinatorics (4 Credits)
Enumeration, including recurrence relations and generating functions. Special attention paid to binomial coefficients, Fibonacci numbers, Catalan numbers and Stirling numbers. Combinatorial designs, including Latin squares, finite projective planes, Hadamard matrices and block designs. Necessary conditions and constructions. Error correcting codes. Applications. Prerequisites: MTH 153 and MTH 211 or equivalent. (M)
Fall, Spring, Alternate Years

MTH 255 Graph Theory (4 Credits)
The course begins with the basic structure of graphs including connectivity, paths, cycles and planarity. We proceed to study independence, stability, matchings and colorings. Directed graphs and networks are considered. In particular, some optimization problems including maximum flow are covered. The material includes theory and mathematical proofs as well as algorithms and applications. Prerequisites: MTH 153 and MTH 211 or permission of the instructor. (M)
Fall, Spring, Alternate Years

MTH 264de Topics in Applied Math-Differential Equations (4 Credits)
This course gives an introduction to the theory and applications of ordinary differential equations. We explore different applications in physics, chemistry, biology, engineering and social sciences. We learn to predict the behavior of a particular system described by differential equations by finding exact solutions, making numerical approximations, and performing qualitative and geometric analysis. Specific topics include solutions to first order equations and linear systems, existence and uniqueness of solutions, nonlinear systems and linear stability analysis, forcing and resonance, Laplace transforms. Prerequisites: MTH 112, MTH 212 and MTH 211 (recommended) or PHY 210, or equivalent. (M)
Fall, Spring, Variable

MTH 270ss Topics in Geometry-The Shape of Space (4 Credits)
This is a course in intuitive geometry and topology, with an emphasis on hands-on exploration and developing the visual imagination. Topics may include knots, geometry and topology of surfaces and the Gauss-Bonnet Theorem, symmetries, wallpaper patterns in Euclidean, spherical and hyperbolic geometries, and an introduction to 3-dimensional manifolds. Prerequisites: MTH 211 and 212 or permission of the instructor. (M)
Fall, Spring, Variable

MTH 280 Advanced Calculus (4 Credits)
Functions of several variables; vector fields; divergence and curl, critical point theory; transformations and their Jacobians; implicit functions; manifolds; theory and applications of multiple integration; and the theorems of Green, Gauss and Stokes. Prerequisites: MTH 211 and MTH 212, or equivalent. MTH 153 is encouraged. (M)
Spring

MTH 281 Introduction to Analysis (4 Credits)
The topological structure of the real line, compactness, connectedness, functions, continuity, uniform continuity, differentiability, sequences and series of functions, uniform convergence, introduction to Lebesgue measure and integration. Prerequisites: MTH 211 and MTH 212, or equivalent. MTH 153 is strongly encouraged. (M)
Fall

MTH 301rs Topics in Advanced Mathematics-Research (3 Credits)
In this course students work in small groups on original research projects. Students are expected to attend a brief presentation of projects at the start of the semester. Recent topics include interactions between algebra and graph theory, plant patterns, knot theory and mathematical modeling. This course is open to all students interested in gaining research experience in mathematics. Prerequisites vary depending on the project, but normally MTH 153 and MTH 211 are required. (M)
Fall, Spring

MTH 303rs Topics in Advanced Mathematics-Research (3 Credits)
In this course students work in small groups on original research projects. Students are expected to attend a brief presentation of projects at the start of the semester. Recent topics include interactions between algebra and graph theory, plant patterns, knot theory and mathematical modeling. This course is open to all students interested in gaining research experience in mathematics. Prerequisites vary depending on the project, but normally MTH 153 and MTH 211 are required. (M)
Fall, Spring

MTH 320/ SDS 320 Seminar: Mathematical Statistics (4 Credits)
Offered as MTH 320 and SDS 320. An introduction to the mathematical theory of statistics and to the application of that theory to the real world. Topics include functions of random variables, estimation, likelihood and Bayesian methods, hypothesis testing and linear models. Prerequisites: a course in introductory statistics, MTH 212 and MTH 246, or equivalent. Enrollment limited to 12. Juniors and seniors only. Instructor permission required. (M)
Spring, Alternate Years

MTH 333ca Topics in Abstract Algebra-Category Theory (4 Credits)
This course provides an introduction to category theory through the language of universal algebra and module theory. Topics include: semigroups, monoids, quasigroups, modules, hom sets, categories, functors, representable functors. Additional topics may be covered if time permits: varieties, Birkhoff's Theorem, congruences, adjunctions. Course consists of lectures, weekly student presentations, a midterm exam and a final presentation. Prerequisites: MTH 233 or equivalent. (E)
Fall, Spring, Variable
MTH 333ct Topics in Abstract Algebra-Coding Theory (4 Credits)
An overview of noiseless and noisy coding. Covers both theory and applications of coding theory. Topics include linear codes, Hamming codes, Reed-Muller codes, cyclic redundancy checks, entropy, and other topics as time permits. Prerequisites: MTH 153 and MTH 211. One of MTH 233 or MTH 238 is highly recommended. (M)
Fall, Spring, Variable

MTH 333la Topics in Abstract Algebra-Advanced Linear Algebra (4 Credits)
This is a second course in linear algebra that explores the structure of matrices. Topics may include characteristic and minimal polynomials, diagonalization and canonical forms of matrices, the spectral theorem, the singular value decomposition theorem, an introduction to modules, and applications to problems in optimization, Markov chains, and others. (M)
Fall, Spring, Variable

MTH 333rt Topics in Abstract Algebra-Representation Theory (4 Credits)
Representation theory is used everywhere, from number theory, combinatorics, and topology, to chemistry, physics, coding theory, and computer graphics. The core question of representation theory is: what are the fundamentally different ways to describe symmetries as groups of matrices acting on an underlying vector space? This course will explain each part of that question and key approaches to answering it. Topics may include irreducible representations, Schur’s Lemma, Maschke’s Theorem, character tables, orthogonality of characters, and representations of specific finite groups. MTH 233 is helpful but not required. Prerequisite: MTH 211. (M)
Fall, Spring, Variable

MTH 333ac Seminar: Advanced Topics in Discrete Applied Mathematics-Calderwood Seminar on Applied Algebraic Combinatorics and Mathematical Biology (4 Credits)
Calderwood Seminar. Combinatorial ideas permeate biology at all scales, from the combinatorial properties of the sequences of letters (nucleotides) representing DNA and RNA, to the symmetries often observed in cell divisions, to the graphs that can be used to represent evolutionary trees. This course focuses on key combinatorial ideas that arise on multiple scales in biology, including molecular, cellular and organism, especially: counting and classification, symmetries and combinatorial graphs. The class interviews mathematicians and biologists about their current research and prepares multiple reports and presentations for different kinds of popular audiences (for example: kids, biologists and newspapers). No particular biological background is expected. MTH 153 and an additional proof-based course are required, or equivalent. MTH 233 and MTH 254 or their equivalents are useful but not required. Enrollment limited to 12. Juniors and seniors only. Instructor permission required. (M)
Fall, Spring, Variable

MTH 353dl Seminar: Advanced Topics in Discrete Applied Mathematics-Mathematics of Deep Learning (4 Credits)
The course covers topics from different parts of mathematics that play some role in the design of neural networks. The course also looks at some neural networks’ applications and at how mathematics is integrated. Topics will include: What is a neural network, examples and applications; Universal approximation theorems (Cybenko and others); Examples of loss functions; Gradient Descent and Stochastic Gradient descent; Generalization gap, training vs testing data; Quick review of game theory, Nash equilibrium; Generative Adversarial Networks (GAN); Unrolled GANs. Enrollment limited to 12. Juniors and seniors only. Instructor permission required. (M)
Fall, Spring, Variable

MTH 364ds Advanced Topics in Continuous Applied Mathematics-Dynamical Systems, Chaos and Applications (4 Credits)
An introduction to the theory of Dynamical Systems with applications. A dynamical system is a system that evolves with time under certain rules. The class looks at both continuous and discrete dynamical systems when the rules are given by differential equations or iteration of transformations. Students study the stability of equilibria or periodic orbits, bifurcations, chaos and strange attractors. Applications are often biological, but the final project is on a scientific application of the student’s choice. Prerequisites: MTH 211 and MTH 212 or equivalent. (M)
Fall, Spring, Variable

MTH 364pd Advanced Topics in Continuous Applied Mathematics-Partial Differential Equations (4 Credits)
Partial differential equations allow the ability to track how quantities change when they depend on multiple variables, e.g. space and time. This course provides an introduction to techniques for analyzing and solving partial differential equations and surveys applications from the sciences and engineering. Specific topics include Fourier series; separation of variables; heat, wave and Laplace’s equations; finite difference numerical methods; and introduction to pattern formations. Prerequisite: MTH 211 and MTH 212, or MTH 280/281, or equivalent. MTH 264 is strongly recommended. Prior exposure to computing (using Matlab, Mathematica, Python, etc.) is helpful. (M)
Fall, Spring, Variable

MTH 370tp Topics in Topology & Geometry-Topology (4 Credits)
Topology is a kind of geometry in which important properties of a shape are preserved under continuous motions (homeomorphisms)—for instance, properties like whether one object can be transformed into another by stretching and squishing but not tearing. This course gives students an introduction to some of the classical topics in the area: the basic notions of point set topology (including connectedness and compactness) and the definition and use of the fundamental group. Prerequisites: MTH 280 or 281 or permission of the instructor. (M)
Fall, Spring, Variable

MTH 381fw Topics in Mathematical Analysis: Fourier Analysis and Wavelets (4 Credits)
The mathematics of how it is possible to simultaneously stream videos while using the same cable to call on the phone. Hilbert spaces, Fourier series, Fourier transform, discrete Fourier transforms, wavelets, multiresolution analysis, applications. Prerequisite: MTH 280 or MTH 281. (M)
Fall, Spring, Variable
MTH 382 Complex Analysis (4 Credits)
Complex numbers, functions of a complex variable, algebra and geometry of the complex plane. Differentiation, integration, Cauchy integral formula, calculus of residues, applications. Prerequisite: MTH 211 and MTH 212, or equivalent.
Fall, Spring, Variable

MTH 400 Special Studies (1-4 Credits)
By permission of the department, normally for majors who have had at least four semester courses at the intermediate level.
Fall, Spring

MTH 430D Honors Project (4 Credits)
Fall, Spring, Annually

MTH 431 Honors Project (8 Credits)
Fall, Spring, Annually

MTH 432D Honors Project (6-12 Credits)
Fall, Spring

MTH 580 Graduate Special Studies (4 Credits)
Fall, Spring